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Motivation:  We have a mass problem

• The standard model Lagrangian describes massless force carriers
• W & Z bosons are not massless!
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Proposed Solution:  Higgs boson

• In the 1960s, Brout, Englert, 
Higgs, Kibble, Guralnik and Hagen 
devised a method for electroweak 
symmetry breaking

• However, it does not predict the 
mass!

• The consequence of this was a 
new particle -- the Higgs boson -- 
a physically realizable particle

• Method introduced a potential 
that spontaneously broke the 
symmetry
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Searching for the Higgs --
Why the Higgs should be “light”
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Why the Higgs should be “light”
• Previous searches ruled out up to 

114.4 GeV/c2 at the 95% CL (LEP 
result)

• Precision electroweak data predict a 
mass around 92+34-26 GeV/c2

• Hadron Collider Searches

• TeV

• LHC

• So we focus in the “light” region 
100-150 GeV/c2

• Recent results from LHC further 
motivate between 
115-130 GeV/c2
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Looking into the Light Region

• There are multiple production and decay 
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Looking into the Light Region
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Looking into the Light Region

• There are multiple production and decay 
modes

• WH & ZH (H to bb) are dominant contributors 
(≲135 GeV/c2) (H to bb is dominated by 
background)

• These channels are analyzed individually 
(“optimized” analyses)

• Here, I’ll discuss some aspects of CDF’s 
ZH to eebb search
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ZH to eebb Search
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Events

Require 2 jets
(ET1,2 ≥ 15, 25 GeV)

Apply b tagging
(3 channels allowed)

Evaluate results on multivariate, 
segmented neural network output

If no evidence, proceed to set upper 
σZH ⨉ BR(H→bb) limits

Consider 3 
Triggers in data

Look for Z 
(2 e’s 76-106 GeV/c2)

ZH to eebb Search

• Mature analysis using many 
sophisticated techniques with 
two goals: 

• increase acceptance

• improve discriminant (due to 
increase in bkg from 1)

➡Lots of neural networks, 
some boosted decision 
trees... to exact the most 
information out of the events

Efficiency 
Scale factors

Energy & 
efficiency scale 

factors

Model mis-IDed 
electrons

Model 
Mistagged Jets

Requires novel 
trigger modeling

Gains extra 
acceptance

Correct Jet 
Energies using NN

Increases 
acceptance and 

sensitivity
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ZH to eebb Search

• Mature analysis using many 
sophisticated techniques with 
two goals: 

• increase acceptance

• improve discriminant (due to 
increase in bkg from 1)

➡Lots of neural networks, 
some boosted decision 
trees... to exact the most 
information out of the events

• Here, I will focus on the triggers 
and electron ID
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by the COT (wire chamber)
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• Tracking within a solenoid (1.4 
T):  Silicon system surrounded 
by the COT (wire chamber)

• Calorimetry:  EM sampling 
calorimeter followed by 
Hadronic sampling calorimeter

• EM calorimeters have 
“shower maximum” 
detectors for shape and 
position information

•  Muon chambers are the outer-
most detectors

What do e’s look like at CDF

Hadronic Cal

EM Cal

COT
Solenoid Si Det.

Muon Chambers
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What do electrons look like at CDF? (central, |η|<1.1)
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What do electrons look like at CDF? (central, |η|<1.1)

• Track in Silicon system, Track in COT

• Silicon hits, # of COT hits, Track 𝜒2 fit, 
pT, track isolation

• Most of the energy deposited in the EM 
calorimeter.  Shower shape information 
from “shower max” detector

• Comparatively low energy deposited in 
Hadronic Calorimeter

• Lshr, Em. Energy, Had. Energy, Had./
Em, E/P, isolation ratio, total (R=0.4) 
cal. isolation

• Quiet muon chambers

• Signal=electrons
Background = mostly jets, possibly taus 
or photons (fake electrons)

IPisolation ratio:  (E(cluster) - E(el))/E(cluster)
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Goal:  Improve ZH Acceptance!
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• Include additional data trigger streams

• Naturally leads to more data

• Likely leads to more signal, but we must model the trigger 
performance well
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• Ideas?

• Include additional data trigger streams

• Naturally leads to more data

• Likely leads to more signal, but we must model the trigger 
performance well

• Improve electron ID efficiency!

• More efficient electron or Z ID leads to more signal:

• Limit electron background (misidentified electrons -- “fakes”)  

Goal:  Improve ZH Acceptance!
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• A trigger applies a set of requirements on data events in an attempt to 
save only interesting events (example:)

• This analysis considered events saved due to their electron-like qualities
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Trigger Model

• When you use Monte Carlo (MC) in a model of triggered data, you need to be 
aware of trigger behaviors

• For instance, a trigger that turns on (fires) at energy X might in reality have a 
turn on like:

14

• There are two ways to account for this:
• Have event requirement E > Y (where the trigger is fully efficient)

• This hurts acceptance
• Attempt to model the turn-on behavior

• apply a weight to MC events corresponding probability it would fire any 
of our triggers
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• Single electron candidate with track and largely EM energy deposited in 
central calorimeter (ET ≥ 18 GeV)

• Two calorimeter deposits of at least 18 GeV largely EM in central or 
forward regions

• A Higgs-motivated trigger was implemented in data taking Lint ≳ 2.45/fb

• Two cal. deposits largely EM central or forward, ET1,2>18, 9 GeV and 
Mee > 40 GeV/c2

• We needed to be able to model the “OR” probability of the combined three 
triggers

• Proposed solution:  model its efficiency with a neural network
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• We want to parameterize how likely a given Z event is to fire one of our triggers

• We need unbiased sample of Z events containing

• one subset of events that fired at 
least one of our triggers

• another subset that did not fire any 
of our triggers

• For this, we used an independent data 
stream (saved for its MET characteristics)

• Trained using variables: ΔR(e1,e2), 
Mee, electron energies, track pTs,
ηdets, Lshr, and Had/Ems

• From network, determine weight, w:

Trigger Model
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Trigger Model Check

• Consistency check in data, for 
instance PT of the second electron

• denominator = Z events in MET 
triggered stream

• o = Z events in MET triggered stream 
that fired one of the 3 electron 
triggers

• -- = Z events in MET stream with 
regression trigger weight applied
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• We can divide these & get an 
efficiency, ɛ

• denominator is all Z events in MET 
triggered stream

• ɛ follows the expected behavior
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Trigger Model Check:  Monte Carlo

• Applying the trigger model improved modeling

• Plots are of the sub-leading electron ET in events with two forward 
electrons
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Changing Gears:  On to Electron ID!

Goal is to train a neural network to separate real electrons from fake 
electrons with a higher efficiency than has been done in the past
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• Previous analysis used a cut-
based electron selection

• Developed a single-electron ID

• Different kinds/quality of 
electrons motivated 3 different 
networks:

• central (|η|<1.1)

• forward with Si-based track 
(phoenix) (|η|>1.1)

• forward without Si-based 
track (1.2<|η|<2.8)
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Training Precursors

• First, define trigger-inspired pre-selection cuts

• so that we only train to find electrons realistically saved in data

• Additionally, the track z0 must be well contained in the detector (|z0|<60cm)

• Then, consider signal and background templates (mc, data?)

• What variables to use?

21
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• N, 1-variables networks are 
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• N-1 2-variable networks are 
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How to Select Variables

• Variables were selected using an 
iterative approach.  Given a pool of N 
variables

• Remove poorly modeled variables

• N, 1-variables networks are 
created and evaluated.  The most 
powerful (smallest testing error) 
variable is retained

• N-1 2-variable networks are 
created and evaluated using the 
var. from step 1 + one from the 
pool

• ⠇

• This continues until the testing 
error is no longer reduced
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Variables Selected
Central:
•Track PT
•Isolation Ratio
•Had./Em.
•Track Isolation
•Total Cal. Isolation (R=.4) 
•E/P
•Energy
•Silicon Hits

Plug Phoenix
•Isolation Ratio
•Pes Pem ΔR
•Had./Em.
•Pes 2d 5×9 U
•Silicon Hits
•Had. Isol. (R=.4)
•Track PT
•Pes 2d 5×9 V

•Pes 2d Energy
•Pem 3×3 ChiSq.
•Em. ET
•Plug Preradiator 
Energy
•Had. ET

Plug Non-Phoenix
•Em. ET
•Pem 3×3 Chisq
•Pes 2d 5×9 U
•Energy
•Pes 2d Energy
•Track Isolation
•Pes 2d 5by9 V
•Total Cal. Isolation (R=.4)
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Making Z’s

• A Z object is formed by

• One electron with a score greater than a 
High value

• Plus another electron with a score greater 
than a Low score value

• Score values were selected by evaluating 
the Z mass distribution in a subset of MC & 
data & looking at the change from the old 
selection

• Looked for improvement in Z w/o increasing 
“fakes”
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Making Z’s

• A Z object is formed by

• One electron with a score greater than a 
High value

• Plus another electron with a score greater 
than a Low score value

• Score values were selected by evaluating 
the Z mass distribution in a subset of MC & 
data & looking at the change from the old 
selection

• Looked for improvement in Z w/o increasing 
“fakes”

• Central pairs have an opposite charge req.

• 76 ≤ Mee ≤ 106 GeV/c2
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• What exactly are we adding?

• As an example, traditional cut-
based selection has isolation 
and Had./EM requirements of

• Isol/ET ≤ 0.1

• Had/EM ≲ 0.06

• The network selection allows for
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Tevatron run for ~3 more months
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• An over-aggressive requirement on “crack-track” Z’s led to a reduction in 
acceptance (1-2%)
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• Trigger + Electron ID led to a ~8% increase in acceptance for data and ZH 
signal (events with 76 ≤ mZ ≤ 106 GeV/c2, two jets)

• This is great!  It’s like 0.6/fb more data, or having the 
Tevatron run for ~3 more months

• Technicalities resulting in losses:  

• An over-aggressive requirement on “crack-track” Z’s led to a reduction in 
acceptance (1-2%)

• A loose forward cut-based selection was considered, but ultimately 
omitted (~1%)

• Overall, cleaner selection (segue to next slide)!
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Modeling Misidentified Electrons
• To find the rate at which a jet will mimic the electron signature, we

• Run over jet-triggered data samples (20, 50, 70, 100)

• Apply a W & Z veto on events (MET<15 and only one possible electron)

• Throw out the lead pT jet in an attempt to remove trigger bias

• remaining jets enter as denominator objects

• if a denominator jet has an electron passing selection within a cone of 0.4, it 
enters as a numerator object
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Modeling Misidentified Electrons
• To find the rate at which a jet will mimic the electron signature, we

• Run over jet-triggered data samples (20, 50, 70, 100)

• Apply a W & Z veto on events (MET<15 and only one possible electron)

• Throw out the lead pT jet in an attempt to remove trigger bias

• remaining jets enter as denominator objects

• if a denominator jet has an electron passing selection within a cone of 0.4, it 
enters as a numerator object

• this ratio is found in bins of ET for each jet-triggered sample.  The average is 
used and a 50% uncertainty is applied to cover the difference in rates
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Modeling Misidentified Electrons
• To find the rate at which a jet will mimic the electron signature, we

• Run over jet-triggered data samples (20, 50, 70, 100)

• Apply a W & Z veto on events (MET<15 and only one possible electron)

• Throw out the lead pT jet in an attempt to remove trigger bias

• remaining jets enter as denominator objects

• if a denominator jet has an electron passing selection within a cone of 0.4, it 
enters as a numerator object

• this ratio is found in bins of ET for each jet-triggered sample.  The average is 
used and a 50% uncertainty is applied to cover the difference in rates
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The resulting “fake” contribution  of the pretag 
sample was reduced from 8% to 1.6%!
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• This analysis was combined with the ZH to μμbb analysis 

29
)2 (GeV/cHM

100 110 120 130 140 150
)2 (GeV/cHM

100 110 120 130 140 150

95
%

 C
L 

U
pp

er
 L

im
it/

SM

1

10

)-1 to 7.9 fb-1CDF Run II Preliminary (7.5 fb

   Expected
   Observed

 m 1 ±   
 m 2 ±   

bb-l+ lAZH 
All Sub-Channels: 

)2 (GeV/cHM
100 110 120 130 140 150



Learning to Accept the Higgs boson at CDF January 17, 2012 S. Lockwitz

Back to the Big Picture
• This analysis was combined with the ZH to μμbb analysis 

• Limit plot:  95% CL upper limits on the Higgs boson production cross section as a function 
of the Higgs boson mass, divided by the expected SM Higgs boson cross section 
(σZH(llbb)/σSM(ZHllbb));  values <1 are considered excluded
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Back to the Big Picture
• This analysis was combined with the ZH to μμbb analysis 

• Limit plot:  95% CL upper limits on the Higgs boson production cross section as a function 
of the Higgs boson mass, divided by the expected SM Higgs boson cross section 
(σZH(llbb)/σSM(ZHllbb));  values <1 are considered excluded

• Many improvements in both analyses led to a ~20% improvement (mH=120 GeV/c2) 
in sensitivity due to technique alone
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Bigger Picture:  ZH to llbb in Perspective

• One of the main contributors at 
low mass
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low mass

• Improvement here greatly helps 
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Bigger Picture:  ZH to llbb in Perspective

• One of the main contributors at 
low mass

• Improvement here greatly helps 
the Tevatron result

Expected Limit (σ/σSM) at 120 
GeV/c2

Expected Limit (σ/σSM) at 120 
GeV/c2

CDF D0
WH 3.06 4.3

ZH/WH to vvbb 3.36 4.5
ZH to llbb 4.67 5.5
H to WW 4.86 5.46
H to ττ 13.9 14.2

Combination 1.241.24
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• Measurement here is also important in 
the case of observance

• H to bb allows for a mH measurement 
at the Tevatron

• LHC is beginning to see very interesting 
results

• If they see something, we should likely 
see something 
soon as well!
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Outlook

• TeV plan of Moriond with ~10/fb

• Exciting improvements in b tagging + 
new data

• LHC is seeing exciting hints in the 
data -- Tev provides a 
complementary approach

• In any case, the world will ask 
what we see 115≤mH≤140 GeV/c2

• With the full dataset, our expected 
sensitivity at mH=125 GeV/c2 is 
2.6 sigma exclusion

• Very interesting 2012!
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Variable Definitions
• Track PT:  Transverse momentum of track

• Isolation Ratio:  Total isolation over EmET

• Had/Em:  Hadronic energy of cluster over 
electromagnetic energy of cluster

• Track Isolation:  Sum the PT of tracks (R<=0.4 
and ΔZ<5 cm) minus the seed track PT (non-
ratio). 

• Total Cal. Isolation (R=0.4): Isolation in both 
EM and Had calorimeters (not a ratio).

• E/P:  Ratio of transverse energy to transverse 
momentum

• Energy:  Energy of the electron 4-vector

• Silicon Hits:  Total number of silicon hits 
associated with the track

• PesPem ΔR:  √( (ηPem - ηPes)2+(ɸPem - ɸPes)2)

• Pes 2d 5x9 U(V):  Energy in central 5 strips of 
the PES over the energy of the cluster’s 9 
strips in the U (or V) plane

• Had Isol (R=0.4):  Excess hadronic transverse 
energy in a cone of 0.4 of the center of the 
cluster (non-ratio)

• Pes 2d Energy:  Energy cluster deposited in 
the U layer

• Pem 3x3 𝜒2:  “A quantitative assessment of 
the pattern of EM energy deposition for a 
given cluster, relative to testbeam.” (cdf5975)

• Em ET:  Transverse energy of cluster in the 
electromagnetic calorimeter

• Plug Preradiator Energy:  Energy deposited in 
towers associated with the cluster in the first 
scintillating layer of the PEM

• Had ET:  Transverse energy of cluster in 
hadronic calorimeter

34
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CDF and Tevatron Combinations
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CDF and Tevatron Combinations
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Efficiencies

37

Tag-and-probe 
efficiencies:

(probe leg passes 
trigger preselection)

ZH event Z efficiency:  
-67.5% (for events generated ZH to eebb)
-74.7% (subset w/ two electron candidates clustered in ntuple)
-96.4% (subset w/ two candidates that pass trigger preselection)

Biggest loss here was 
due to: 
‣forward |η| or 
Phoenix requirements
‣Had/Em
‣track z0
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Why Trigger Score is a Probability

38

Now, if the error on f(x) is 
minimized perfectly, we 
can evaluate this relation 
at a particular x value and 
the relation holds:
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Standard CDF Efficiencies:

39

Central Tight:

Central Loose:  

Forward (1.2 ≤ |η| ≤ 2.8):

Forward Tight Phoenix:

Forward Tight Phoenix |η|<2:



Learning to Accept the Higgs boson at CDF January 17, 2012 S. Lockwitz

B-Tagging Efficiencies

40

JetProb OP
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• mt, mW, mZ, ΓW, hadronic vacuum 
polarization (       ), and Z pole data 
(asymmetry factors, ratio of widths,...) 
go into the fit

What’s Going on Here:                 ?

• Precision electroweak measurements 
predict the Higgs mass by determining 
radiative corrections which are sensitive 
to mH

41
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Δαhad(mZ)Δα(5) 0.02750 ± 0.00033 0.02759
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959
σhad [nb]σ0 41.540 ± 0.037 41.478
RlRl 20.767 ± 0.025 20.742
AfbA0,l 0.01714 ± 0.00095 0.01646
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1482
RbRb 0.21629 ± 0.00066 0.21579
RcRc 0.1721 ± 0.0030 0.1722
AfbA0,b 0.0992 ± 0.0016 0.1039
AfbA0,c 0.0707 ± 0.0035 0.0743
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1482
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.399 ± 0.023 80.378
ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092
mt [GeV]mt [GeV] 173.20 ± 0.90 173.27
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Trigger Requirements

42
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Modeling Events Due to Misidentified Electrons

• All electron plus jet pairs are 
considered as events with a 
weight equal to the fake rate of 
the jet

• This should already have 
“double fake” events where the 
electron is really a fake

• The neural network selection 
reduces the fake rate (8% to 
1.6% of events at pretag)

43
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Jet Selection

• Require two jets for H to bb
• |ηdet|<2 and ET(jet1,jet2)>25, 15 GeV

• Pretag:  this is the high-statistics (25 x 
events) model validation region

• b tag:  b quarks live long enough to 
hadronize producing a displaced vertex -- 
finding this is b tagging  

• Apply b tagging to the pretag sample
• 3 final analysis channels:

• Double tight tagged
• Double loose tagged
• Single tight tagged

44
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Main Backgrounds

• Processes that mimic the 2 
electron + 2 jet signature

• Z + 2 jet

• Misidentified objects (electrons 
= fakes, b jets = mistags)

• ttbar

• diboson (ZZ, WZ, some WW + 
jets)
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88%
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1%

Main Backgrounds

• Pretag is dominated by light 
flavor (lf) jets

46
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Main Backgrounds

• Pretag is dominated by light 
flavor (lf) jets
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Main Backgrounds

• Pretag is dominated by light 
flavor (lf) jets

46

ttbar
Diboson
Z+hf jets
Z+lf jets
Fakes

• Final analysis channels have 
varying backgrounds based on 
b-tag combination
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Model

• To test the hypotheses, we of 
course need a model

• Monte Carlo (MC) and data-
driven methods are used

• Data-driven methods better 
describe mistakes

47

level since there are no real b jets. It is replaced with a data-driven method at the

tag level. The remaining Monte Carlo processes are modeled with Pythia 2.16, and

it should be noted the tt sample assumes a top quark mass of 172.5 GeV/c2. All

processes use Geant3 [59, 60] for detector simulation. The cross sections applied

for the processes are listed in Table 4.8 for background and Table 4.9 for signal.

Process Generator �

Z+l.f. Alpgen+Pythia 4.66 fb to 2111 pb
Z+cc̄ Alpgen+Pythia 148.4 to 1512 fb
Z+bb̄ Alpgen+Pythia 53.9 to 715.4 fb
WW Pythia 11.34 pb
WZ Pythia 3.47 pb
ZZ Pythia 3.62 pb
tt Pythia 7.04 pb

Table 4.8: The production rates used in normalization of Monte Carlo model compo-
nents. The l.f. denotes light-flavor jets (u,d,s). The Z+jets cross sections (�) include
a k-factor of 1.4 to account for the di�erence between NLO and LO calculations.
There is a range cross sections for the Alpgen+Pythia processes because they are
generated in di�erent samples according to additional number of partons included in
the scattering.

MH (GeV/c2) �(fb) BR(H � bb̄)

100 169.8 0.8033
105 145.9 0.7857
110 125.7 0.7590
115 103.9 0.7195
120 90.2 0.6649
125 78.5 0.5948
130 68.5 0.5118
135 60.0 0.4215
140 52.7 0.3304
145 46.3 0.2445
150 40.8 0.1671

Table 4.9: Signal production rates (�) and branching ratios (BR). An additional
factor of 0.10095 is included to account for BR(Z to charged leptons).
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-Misidentified electrons 
(fakes)

-Misidentified b jets 
(mistags)
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Model Validation:  Acceptance Tables

48

PreTag Event Yields
ZH⇥ e+e�bb̄ Analysis

CDF Run II Preliminary (7.5 fb�1)
Data 21122

tt 126 ± 17
Diboson 397 ± 34

Z/�� ⇥ ee + h.f. 1786 ± 561
Z/�� ⇥ ee + l.f. 18783 ± 4229

Fakes 354 ± 177

Model 21446 ± 4300

Tag Level Event Yields
ZH⇥ e+e�bb̄ Analysis CDF Run II Preliminary (7.5 fb�1)

Single Tight Tag Loose Double Tag Double Tight Tag

Data 693 87 51
ZH120 2.0 ± 0.2 0.8 ± 0.1 0.9 ± 0.1
tt 42 ± 6 17 ± 2 16 ± 3
Diboson 27 ± 3 5.7 ± 0.7 4.3 ± 0.6
Z/�� ⇥ ee + h.f. 254 ± 81 43 ± 14 27 ± 10
Mistags 333 ± 47 20 ± 5 2.2 ± 0.6
Fakes 25 ± 12 0.4 ± 0.2 0.2 ± 0.1

Model 681 ± 120 86 ± 20 50 ± 13

High-statistics model-
validation region:

Final Analysis Channels:
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Model Validation:  Plots (Pretag)
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• The final discriminant is a neural-network output

Final Discriminant

50
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• The final discriminant is a neural-network output

Final Discriminant

50

tt
High

Flavor-
Separator

Low
Flavor-

Separator

• To improve discrimination, the output is 
separated into three regions:
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• The final discriminant is a neural-network output

Final Discriminant

50

Tagged Events

tt
Network
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• To improve discrimination, the output is 
separated into three regions:
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• The final discriminant is a neural-network output

Final Discriminant

50

Tagged Events

tt
Network
Score >

0.5

Region I
Jet-Flavor
Separator

> 0

Region II Region III

Yes

No

No
Yes

tt
High

Flavor-
Separator

Low
Flavor-

Separator

• Training used tag-level MC (no signs of over-training)

• Variables used were selected in earlier analyses 
(iterative approach) and BDT outputs were added

• Network applied is the same for the three regions 
and for each tag category, BUT a different network is 
trained for each mass hypothesis

• To improve discrimination, the output is 
separated into three regions:
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Final Discriminant:  Input Variables

• Network variables taken from those 
selected by previous analyses.

51

•Energy BDT
•Shape BDT
•ΔR(e1,e2)
•Twist e1e2
•Sphericity
•Δϕ(bb)
•cos(θ*)

•ΔR(j2,Z)
•Mjj
•MET
•Z.Et() + jj.Et()
•jj.Pt()
•Z PT
•MET proj. All Jets
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Final Discriminant:  Input Variables

• Network variables taken from those 
selected by previous analyses.

51

•Energy BDT
•Shape BDT
•ΔR(e1,e2)
•Twist e1e2
•Sphericity
•Δϕ(bb)
•cos(θ*)

•ΔR(j2,Z)
•Mjj
•MET
•Z.Et() + jj.Et()
•jj.Pt()
•Z PT
•MET proj. All Jets

Shape BDT Energy BDT

�R(e1, e2) Dijet Mass
�ET proj. onto vector ⇥(jets) �ET

�R(j1, j2) �ET /
�
(j1ET + j2ET)

�R(Z,D⌥jetObject) �ET /
�
(⇥ jet ET)

Aplanarity sigExtraEt=ZET+Dijet ET
Sphericity Dijet PT
�⇥(j1, j2) Mass(e1, j1)

Twist(e1, e2) Mass(e2, j2)
Twist(j1, j2) Z PT
�⌃(j1, j2) Mass(Z,jj)

�⇤(�ET ,j1) in Z rest frame Number of jets
�⇤(�ET ,j2) in Z rest frame J1ET
�⇤(�ET ,e1) in H rest frame J2ET
�⇤(�ET ,e2) in H rest frame �ET + el. ET ’s + jet ET ’s
�ET projection onto jet 1 �ET + lepton ET ’s
�ET projection onto jet 2 �ET (j1, j2)

Z⇥ e1ET
j1⇥ e2ET
j2⇥

�R(j1, Z)
�R(j2, Z)
cos(⇤�)

cos(⇧|⌅ = �/2)
cos(⇤jet1) in Z rest Frame
cos(⇤jet2) in Z rest Frame
cos(⇤e1) in H rest Frame
cos(⇤e2) in H rest Frame

Table 1: Distributions input to the BDT’s. Twist(�1,�2) =
tan�1(�⌃(�1,�2)/�⇥(�1,�2)) [?]. ⇤ is the angle between an object
and the proton beam direction. ⇤� is the angle between the Z bo-
son candidate and the proton beam direction in the zero momentum
frame. The sum of the angles ⇧ and ⌅ is equal to the angle between
the Higgs candidate and the lead PT lepton in the Z boson rest frame.

• We had a large number of well-modeled 
distributions to distinguish S & B
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Final Discriminant:  Input Variables

• Network variables taken from those 
selected by previous analyses.

51

•Energy BDT
•Shape BDT
•ΔR(e1,e2)
•Twist e1e2
•Sphericity
•Δϕ(bb)
•cos(θ*)

•ΔR(j2,Z)
•Mjj
•MET
•Z.Et() + jj.Et()
•jj.Pt()
•Z PT
•MET proj. All Jets

Shape BDT Energy BDT

�R(e1, e2) Dijet Mass
�ET proj. onto vector ⇥(jets) �ET

�R(j1, j2) �ET /
�
(j1ET + j2ET)

�R(Z,D⌥jetObject) �ET /
�
(⇥ jet ET)

Aplanarity sigExtraEt=ZET+Dijet ET
Sphericity Dijet PT
�⇥(j1, j2) Mass(e1, j1)

Twist(e1, e2) Mass(e2, j2)
Twist(j1, j2) Z PT
�⌃(j1, j2) Mass(Z,jj)

�⇤(�ET ,j1) in Z rest frame Number of jets
�⇤(�ET ,j2) in Z rest frame J1ET
�⇤(�ET ,e1) in H rest frame J2ET
�⇤(�ET ,e2) in H rest frame �ET + el. ET ’s + jet ET ’s
�ET projection onto jet 1 �ET + lepton ET ’s
�ET projection onto jet 2 �ET (j1, j2)

Z⇥ e1ET
j1⇥ e2ET
j2⇥

�R(j1, Z)
�R(j2, Z)
cos(⇤�)

cos(⇧|⌅ = �/2)
cos(⇤jet1) in Z rest Frame
cos(⇤jet2) in Z rest Frame
cos(⇤e1) in H rest Frame
cos(⇤e2) in H rest Frame

Table 1: Distributions input to the BDT’s. Twist(�1,�2) =
tan�1(�⌃(�1,�2)/�⇥(�1,�2)) [?]. ⇤ is the angle between an object
and the proton beam direction. ⇤� is the angle between the Z bo-
son candidate and the proton beam direction in the zero momentum
frame. The sum of the angles ⇧ and ⌅ is equal to the angle between
the Higgs candidate and the lead PT lepton in the Z boson rest frame.

• We had a large number of well-modeled 
distributions to distinguish S & B
• Network performance drops after 

a few variables are added
• Instead, developed BDTs (bagged)
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Electron ID Neural Network:  Powerful Variables

53
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Limit Calculation

54

• The Poisson probability of n given 
events occurring (μ is average) is: p(n,�) = e���n

n!
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Limit Calculation

54

�NC
�=1

�Nb
j=1

e�(R⇥s�j+b�j)(R⇥s�j+b�j)n�j
n�j!

• Extending to Nb bins and NC channels and 
replacing μ with R × s + b (s & b are expected 
signal and background; R is a multiplicative 
factor reflecting the sensitivity to signal)

• The Poisson probability of n given 
events occurring (μ is average) is: p(n,�) = e���n

n!
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Limit Calculation

54

�NC
�=1

�Nb
j=1

e�(R⇥s�j+b�j)(R⇥s�j+b�j)n�j
n�j!

• Extending to Nb bins and NC channels and 
replacing μ with R × s + b (s & b are expected 
signal and background; R is a multiplicative 
factor reflecting the sensitivity to signal)

L(R, �s, �b|�n, �⇥)⇥ �( �⇥) =
�NC

⌅=1

�Nb
j=1

⇤
n⌅j
⌅j e�⇤⌅j

n⌅j!
⇥
�nnp

k=1 e
�⇥2k/2

• Introduce systematic uncertainties 
with π(θ), where θk is the k-th 
nuisance parameter

• The Poisson probability of n given 
events occurring (μ is average) is: p(n,�) = e���n

n!
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Limit Calculation

54

�NC
�=1

�Nb
j=1

e�(R⇥s�j+b�j)(R⇥s�j+b�j)n�j
n�j!

• Extending to Nb bins and NC channels and 
replacing μ with R × s + b (s & b are expected 
signal and background; R is a multiplicative 
factor reflecting the sensitivity to signal)

L(R, �s, �b|�n, �⇥)⇥ �( �⇥) =
�NC

⌅=1

�Nb
j=1

⇤
n⌅j
⌅j e�⇤⌅j

n⌅j!
⇥
�nnp

k=1 e
�⇥2k/2

• Introduce systematic uncertainties 
with π(θ), where θk is the k-th 
nuisance parameter

• Integrate over the parameter 
space leaving a function in R, P(R) P(R) =

�
L(R, �s, �b|�n, �⇥)� �( �⇥)d �⇥

• The Poisson probability of n given 
events occurring (μ is average) is: p(n,�) = e���n

n!
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Limit Calculation

54

�NC
�=1

�Nb
j=1

e�(R⇥s�j+b�j)(R⇥s�j+b�j)n�j
n�j!

• Extending to Nb bins and NC channels and 
replacing μ with R × s + b (s & b are expected 
signal and background; R is a multiplicative 
factor reflecting the sensitivity to signal)

L(R, �s, �b|�n, �⇥)⇥ �( �⇥) =
�NC
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�Nb
j=1

⇤
n⌅j
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n⌅j!
⇥
�nnp

k=1 e
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• Introduce systematic uncertainties 
with π(θ), where θk is the k-th 
nuisance parameter

• Integrate over P(R) to find 95% 
coverage (95% confidence level) 0.95 =

� R0
0 dRP(R)

R

P(
R)

• Integrate over the parameter 
space leaving a function in R, P(R) P(R) =

�
L(R, �s, �b|�n, �⇥)� �( �⇥)d �⇥

• The Poisson probability of n given 
events occurring (μ is average) is: p(n,�) = e���n

n!
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�NC
�=1

�Nb
j=1

e�(R⇥s�j+b�j)(R⇥s�j+b�j)n�j
n�j!

• Extending to Nb bins and NC channels and 
replacing μ with R × s + b (s & b are expected 
signal and background; R is a multiplicative 
factor reflecting the sensitivity to signal)

L(R, �s, �b|�n, �⇥)⇥ �( �⇥) =
�NC

⌅=1

�Nb
j=1

⇤
n⌅j
⌅j e�⇤⌅j

n⌅j!
⇥
�nnp

k=1 e
�⇥2k/2

• Introduce systematic uncertainties 
with π(θ), where θk is the k-th 
nuisance parameter

• Integrate over P(R) to find 95% 
coverage (95% confidence level) 0.95 =

� R0
0 dRP(R)

R

P(
R)

This is similar to a fit since what 
contributes the most to the integral are 

the terms with the highest likelihood

• Integrate over the parameter 
space leaving a function in R, P(R) P(R) =

�
L(R, �s, �b|�n, �⇥)� �( �⇥)d �⇥

• The Poisson probability of n given 
events occurring (μ is average) is: p(n,�) = e���n

n!
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• Luminosity uncertainty:  3.8% 
(uncertainty in inelastic cross 
section), 4.4% due in acceptance 
& efficiency of luminosity 
monitor)
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• Trigger model:  1% (effect 
measured using different sub-
sets of data to train and test the 
network)

• Luminosity uncertainty:  3.8% 
(uncertainty in inelastic cross 
section), 4.4% due in acceptance 
& efficiency of luminosity 
monitor)
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• cross-section uncertainty:  6% 
(ZZ, WZ, WW), 40% (Z+heavy 
flavor), 10% (ttbar)

• Trigger model:  1% (effect 
measured using different sub-
sets of data to train and test the 
network)

• Luminosity uncertainty:  3.8% 
(uncertainty in inelastic cross 
section), 4.4% due in acceptance 
& efficiency of luminosity 
monitor)
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• Misidentified electrons:  50% 
(assessed by checking the rates 
in different jet data sets)
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(ZZ, WZ, WW), 40% (Z+heavy 
flavor), 10% (ttbar)

• Trigger model:  1% (effect 
measured using different sub-
sets of data to train and test the 
network)
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(uncertainty in inelastic cross 
section), 4.4% due in acceptance 
& efficiency of luminosity 
monitor)
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• b-tag scale factor:  5.2% (single 
tight tag), 8.7% (double loose 
tag), 10.4% (double tight tag) 

• Misidentified electrons:  50% 
(assessed by checking the rates 
in different jet data sets)

• cross-section uncertainty:  6% 
(ZZ, WZ, WW), 40% (Z+heavy 
flavor), 10% (ttbar)

• Trigger model:  1% (effect 
measured using different sub-
sets of data to train and test the 
network)

• Luminosity uncertainty:  3.8% 
(uncertainty in inelastic cross 
section), 4.4% due in acceptance 
& efficiency of luminosity 
monitor)
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• EM energy scale:  3% 
(acceptance effects of period 
corrections and plug-energy 
smearing)

• b-tag scale factor:  5.2% (single 
tight tag), 8.7% (double loose 
tag), 10.4% (double tight tag) 

• Misidentified electrons:  50% 
(assessed by checking the rates 
in different jet data sets)

• cross-section uncertainty:  6% 
(ZZ, WZ, WW), 40% (Z+heavy 
flavor), 10% (ttbar)

• Trigger model:  1% (effect 
measured using different sub-
sets of data to train and test the 
network)

• Luminosity uncertainty:  3.8% 
(uncertainty in inelastic cross 
section), 4.4% due in acceptance 
& efficiency of luminosity 
monitor)
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• lepton ID scale factor:  2%

• EM energy scale:  3% 
(acceptance effects of period 
corrections and plug-energy 
smearing)

• b-tag scale factor:  5.2% (single 
tight tag), 8.7% (double loose 
tag), 10.4% (double tight tag) 

• Misidentified electrons:  50% 
(assessed by checking the rates 
in different jet data sets)

• cross-section uncertainty:  6% 
(ZZ, WZ, WW), 40% (Z+heavy 
flavor), 10% (ttbar)

• Trigger model:  1% (effect 
measured using different sub-
sets of data to train and test the 
network)

• Luminosity uncertainty:  3.8% 
(uncertainty in inelastic cross 
section), 4.4% due in acceptance 
& efficiency of luminosity 
monitor)
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• ISR/FSR:  4% (effect measured in 
MC)

• lepton ID scale factor:  2%

• EM energy scale:  3% 
(acceptance effects of period 
corrections and plug-energy 
smearing)

• b-tag scale factor:  5.2% (single 
tight tag), 8.7% (double loose 
tag), 10.4% (double tight tag) 

• Misidentified electrons:  50% 
(assessed by checking the rates 
in different jet data sets)

• cross-section uncertainty:  6% 
(ZZ, WZ, WW), 40% (Z+heavy 
flavor), 10% (ttbar)

• Trigger model:  1% (effect 
measured using different sub-
sets of data to train and test the 
network)

• Luminosity uncertainty:  3.8% 
(uncertainty in inelastic cross 
section), 4.4% due in acceptance 
& efficiency of luminosity 
monitor)
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• Jet-energy scale:  shift the jet-
energy corrections in MC ±σ

• ISR/FSR:  4% (effect measured in 
MC)

• lepton ID scale factor:  2%

• EM energy scale:  3% 
(acceptance effects of period 
corrections and plug-energy 
smearing)

• b-tag scale factor:  5.2% (single 
tight tag), 8.7% (double loose 
tag), 10.4% (double tight tag) 

• Misidentified electrons:  50% 
(assessed by checking the rates 
in different jet data sets)

• cross-section uncertainty:  6% 
(ZZ, WZ, WW), 40% (Z+heavy 
flavor), 10% (ttbar)

• Trigger model:  1% (effect 
measured using different sub-
sets of data to train and test the 
network)

• Luminosity uncertainty:  3.8% 
(uncertainty in inelastic cross 
section), 4.4% due in acceptance 
& efficiency of luminosity 
monitor)
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• Mistagged jets:  run on data with 
parameters ±σ

• Jet-energy scale:  shift the jet-
energy corrections in MC ±σ

• ISR/FSR:  4% (effect measured in 
MC)

• lepton ID scale factor:  2%

• EM energy scale:  3% 
(acceptance effects of period 
corrections and plug-energy 
smearing)

• b-tag scale factor:  5.2% (single 
tight tag), 8.7% (double loose 
tag), 10.4% (double tight tag) 

• Misidentified electrons:  50% 
(assessed by checking the rates 
in different jet data sets)

• cross-section uncertainty:  6% 
(ZZ, WZ, WW), 40% (Z+heavy 
flavor), 10% (ttbar)

• Trigger model:  1% (effect 
measured using different sub-
sets of data to train and test the 
network)

• Luminosity uncertainty:  3.8% 
(uncertainty in inelastic cross 
section), 4.4% due in acceptance 
& efficiency of luminosity 
monitor)
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A Word on How We Display the Results
• PE is drawn (from the MC), and 

integral set up

• The P(R) integral is integrated 
to the 95% value giving R0

• (For the expected value) R0 is 
entered into a distribution of R0

• After PEs are done, 1 & 2 σ 
bands are found

• This is done at each mass point 
creating this kind of graph

• Observed is treated as separate 
PE 

56
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Result:  ZH to eebb
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Extras!
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PreTag Zs Fired Fired Excl.
Single e 74.6% 5.96%

2 Cal Deposits 84.8% 6.01%
New Trigger 69.0% 5.09%

EM:

Central: �(ET )
ET

= 13.5%p
ET
� 2%

Forward: �(E)
E = 16%p

E
� 1%

Hadronic:

Central: �(ET )
ET

= 75%p
ET
� 3%

Forward: �(E)
E = 80%p

E
� 5%
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PreTag Zs Fired Fired Excl.
Single e 74.6% 5.96%

2 Cal Deposits 84.8% 6.01%
New Trigger 69.0% 5.09%

EM:

Central: �(ET )
ET

= 13.5%p
ET
� 2%

Forward: �(E)
E = 16%p

E
� 1%

Hadronic:

Central: �(ET )
ET

= 75%p
ET
� 3%

Forward: �(E)
E = 80%p

E
� 5%

High Low
Central 0.75 0.3

Forward Phoenix 0.5 0
Forward Non-Phx 0.6 0.3

Score Range [-1,1]
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Making Z’s
• A Z object is formed by

• One electron with a score greater than a 
High value

• Plus another electron with a score greater 
than a Low score value

59
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High Low
Central 0.75 0.3

Forward Phoenix 0.5 0
Forward Non-Phx 0.6 0.3

Score Range [-1,1]

Score selection:
While maximizing a significance value 
was pursued, it led to extreme cut-
values.  Values selected by taking the 
best Z mass distribution in data (also 
check MC) 
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Making Z’s
• A Z object is formed by

• One electron with a score greater than a 
High value

• Plus another electron with a score greater 
than a Low score value

• Reject Non-Phx + Non-Phx objects

• Additionally allow a high-score central electron 
to be paired with a crack-track electron

• Crack-track electrons are cut-based (track 
points to an uninstrumented part of the 
calorimeter)

• We have a mass cut of 76-106 GeV/c2 and an 
opposite charge req. for central+central events

High Low
Central 0.75 0.3

Forward Phoenix 0.5 0
Forward Non-Phx 0.6 0.3

Score Range [-1,1]

Score selection:
While maximizing a significance value 
was pursued, it led to extreme cut-
values.  Values selected by taking the 
best Z mass distribution in data (also 
check MC) 
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